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SUMMARY

A moving mesh �nite element method is proposed for the adaptive solution of second- and fourth-order
moving boundary problems which exhibit scale invariance. The equations for the mesh movement are
based upon the local application of a scale-invariant conservation principle incorporating a monitor func-
tion and have been successfully applied to problems in both one and two space dimensions. Examples
are provided to show the performance of the proposed algorithm using a monitor function based upon
arc-length. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Moving meshes have proved to be a valuable tool in Computational Fluid Dynamics, having
been successfully applied in many di�erent contexts, ranging from phase change and blow-up
problems to hyperbolic conservation laws and more general classes of time-dependent �ow.
In this paper a moving mesh �nite element method is presented for the solution of a class
of scale-invariant partial di�erential equations (PDEs) with moving boundaries. Although no
analysis is presented, the numerical experiments suggest that the approach exhibits similar
stability properties to standard, �xed mesh, �nite element methods.
The moving mesh approach has been rekindled by recent interest in geometric integra-

tion and scale invariance, which treats independent and dependent variables alike [1]. In
this paper, the mesh equations are based on the principle of conserving the integral of a
scale invariant monitor function in time within each patch of �nite elements. An additional
constraint is required to specify the mesh velocity uniquely, this being carried out through
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a mesh velocity potential in the manner of Reference [2]. Unlike most approaches to moving
boundary problems, the approximation procedure uses the PDE to obtain the mesh velocities:
based upon an approach that has already been successfully applied to a range of moving
boundary problems in one and two space dimensions using the dependent variable as monitor
function [3].

1.1. Scale invariance

Scaling is a natural property of models of physical systems due to their independence of
physical units [4]. For a scale invariant problem there exist indices � and � such that the
scaling

t= �t̂; x= ��x̂; u= ��û (1)

leaves the PDE

ut =Lu (2)

(where Lu is a purely spatial operator on an evolving domain �(t)) and appropriate boundary
conditions invariant. For example, in the case of the porous medium equation (PME) in
d dimensions, which represents isentropic gas �ow through porous media,

ut =∇ · (un∇u) subject to u|@� =0 (3)

it can be shown that �=1=(nd+2) and �=−d=(nd+2), while for the fourth-order equation

ut +∇ · (un∇∇2u)=0 subject to u|@� = @u
@n

∣∣∣∣
@�
=0 (4)

�=1=(nd + 4) and �=−d=(nd + 4). A range of applications of this equation can be found
in Reference [5] (and references therein). For both these problems there exist known self-
similar solutions, [5, 6], which are ideal for comparison with the results obtained by numerical
schemes.

1.2. Monitor functions and conservation

Given an initial condition for (2), a set of test functions wi, and a non-negative, solution-
dependent monitor function m(u;∇u), then one may de�ne ki ∈ [0; 1] such that∫

�
wim(u;∇u) d�= ki

∫
�
m(u;∇u) d�= ci say (5)

If the test functions form a partition of unity then
∑

i ki=1. Furthermore, conservation of (5),
as the solution u and domain �(t) evolve in time, may be used as the guiding principle for
a mesh movement algorithm (as in Reference [3] with m(u;∇u) ≡ u). For a scale invariant
problem (5) may be modi�ed to become

∫
�(t)
wim̃(t; u;∇u) d�= ci (6)
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where the wi are scale invariant and m̃ is given by

m̃(t; u;∇u)= t−d�m(t−�u; t−�+�∇u) (7)

Note that m̃=m at t=1 (which, without loss of generality, is taken to be the initial time
throughout this paper) and that, as a result of scale invariance, the ci are now independent
of t. We shall refer to Equation (6) as the conservation principle. This equation suggests the
existence of a mapping x(t) for which scale invariance is sustained for all t¿1. We next
derive the velocity ẋ(t) explicitly by di�erentiating (6) with respect to t.

1.3. The velocity ẋ(t)

Using Leibniz’s rule (aka the Reynolds Transport Theorem) and assuming that
@wi=@t+ ẋ ·∇wi=0 (i.e. the test function wi is advected with velocity ẋ), we obtain from (6)

0 =
@
@t

∫
�(t)
wim̃(t; u;∇u) d�=

∫
�(t)

(
d
dt
(wim̃) +∇ · (wim̃ẋ)

)
d�

=
∫
�(t)
wi

(
@m̃
@t
+

(
@m̃
@u
+
@m̃
@∇u · ∇

)
@u
@t
+∇ · (m̃ẋ)

)
d� (8)

If we now substitute for @u=@t from the PDE, (2), this becomes an equation for ẋ. By itself
this is insu�cient to determine ẋ uniquely in more than one space dimension. However, by
the Helmholtz Decomposition Theorem uniqueness may be obtained by additionally specifying
curl ẋ and a suitable boundary condition. By writing curl ẋ=curl v, where v is prescribed, it
follows that there exists a potential function � such that ẋ= v+∇�. (Since we shall not have
occasion to use a non-zero v in what follows it is set to zero, implying an irrotational ẋ.)
Equation (8) may now be written as a weak form of an elliptic equation for �

−
∫
�(t)
wi∇ · (m̃∇�) d�=

∫
�(t)
wi

(
@m̃
@t
+

(
@m̃
@u
+
@m̃
@∇u · ∇

)
Lu

)
d� (9)

A convenient weak form of the equations connecting ẋ and � is
∫
�(t)
wi(ẋ − ∇�)k d�=0 for k=1; : : : ; d (10)

We refer to (9) and (10) as the potential and velocity equations, respectively.

1.4. Finite elements

Following Reference [3], let x≈X, a piecewise linear �nite element mapping from some
reference domain (typically �(1)). This de�nes a moving �nite element mesh on which
wi ≈Wi, the usual piecewise linear basis function at node i, whilst �≈� and u≈U are
piecewise linear approximations. The conservation principle (6) then becomes

∫
�(t)
Wim̃(t; U;∇U ) d�=Ci (11)
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say, where the Ci are known from the initial mesh and data. Similarly, the potential
equation (9) may be expressed as∫

�(t)
m̃∇Wi · ∇�d�=

∫
�(t)
Wi

(
@m̃
@t
+

(
@m̃
@U

+
@m̃
@∇U · ∇

)
LU

)
d� (12)

where �=0 has been applied on the boundary (corresponding to a zero tangential mesh
velocity at the boundary). The velocity equation, (10), becomes∫

�(t)
Wi(Ẋ − ∇�)k d�=0 for k=1; : : : ; d (13)

corresponding to the best approximation Ẋ to ∇� in the space spanned by the Wi.
Using the �nite element expansions X=

∑
j XjWj;�=

∑
j �jWj; U =

∑
j UjWj, the matrix

forms of Equations (12) and (13) can be derived. These equations form the basis of the
method whereby, given U on a mesh X, a mesh velocity Ẋ can be found. This is used
to update the mesh via forward Euler time-stepping (say), after which the solution can be
recovered on the new mesh via the conservation principle (11). Alternatively, U may also be
approximated using time-stepping based upon the weak form∫

�(t)
WiU̇ d�=

∫
�(t)
Wi(∇U · Ẋ+ LU ) d� (14)

with U̇ =0 on the boundary of �(t).

2. MONITOR FUNCTIONS

The consequences of taking m to be the ‘density’ monitor function u have been extensively
studied in Reference [3]. Many other choices for m are, however, possible. For the remain-
der of this paper we consider just one of these, the ‘arc-length’ monitor (widely used be-
cause of its tendency to move nodes into regions where the solution gradient is high) given
by

√
1 + (∇u)2, although the generalization to other monitors follows in a similar manner.

From (7) m̃= t−d�
√
1 + t2(�−�)(∇u)2 and Equation (12) then becomes
∫
�(t)

√
t−2(�−�) + (∇U )2∇Wi · ∇�d�

=
∫
�(t)

Wi
t
(−d�+ (� − �))

√
t−2(�−�) + (∇U )2 d�

+
∫
�(t)
Wi

−(� − �)t−2(�−�)−1 +∇U · ∇(LU )√
t−2(�−�) + (∇U )2 d� (15)

while (11) becomes ∫
�(t)
Wit−d�

√
1 + t2(�−�)(∇U )2 d�=Ci (16)
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3. APPLICATIONS

3.1. The porous medium equation (PME)

Using the values of � and � noted in Section 1 with the arc-length monitor, (15) gives

∫
�(t)

√
t−2(d+1)=(nd+2) + (∇U )2∇Wi · ∇�d�

=
∫
�(t)

Wit−1

nd+ 2

√
t−2(d+1)=(nd+2) + (∇U )2 d�

+
∫
�(t)
Wi

−(d+ 1)t−((n+2)d+4)=(nd+2)=(nd+ 2) +∇U · ∇Q√
t−2(d+1)=(nd+2) + (∇U )2 d� (17)

while (16) becomes
∫
�(t)
Wit−d=(nd+2)

√
1 + t2(d+1)=(nd+2)(∇U )2 d�=Ci (18)

Note that due to the piecewise linear approximation it is necessary to introduce an intermediate
�nite element function Q≈LU in (17), recovered from the weak form

∫
�(t)
WiQ d�=−

∫
�(t)
Un∇Wi · ∇U d� (19)

Results for the one-dimensional equation are shown in Figure 1. In each case the results
shown were obtained using (14) to update the values of the dependent variable and the
initial mesh was uniformly spaced. The test case shown models a similarity solution to the
PME of the form given in Reference [3, 6]. When n=1 the scheme exhibits close to second-
order accuracy, while when n=2 (and higher) the exact solution has in�nite gradient at the
boundary and the numerical order of accuracy reduces to approximately one.

Porous Medium Equation: n=1
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Porous Medium Equation: n=2
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Figure 1. Snapshots of one-dimensional results at various times illustrating: PME with n=1 (left);
PME with n=2 (middle); 4th order with n=1 (right).
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Figure 2. Snapshots of two-dimensional results at various times illustrating the evolution of the PME
solution with n=2 from initial conditions that do not correspond to a similarity solution: successive

slices through y=0 (left); initial mesh (middle); �nal mesh (right).

Similar results are seen in two dimensions when comparisons are made with exact similarity
solutions. However, Figure 2 does not show a similarity solution, instead it has been chosen
to illustrate the movement of the mesh towards a region (the moving boundary in this case)
in which the gradient of the evolving solution is steepening. The conservation of arc-length
can clearly be seen to lead to a reduction in the mesh size in the regions where the gradient
has increased sharply over time.

3.2. A fourth-order equation

In order to apply the proposed algorithm to the fourth-order problem (4) using piecewise
linear �nite elements it is necessary to express it as a pair of second-order equations:

ut +∇ · (un∇p)=0; p=∇2u (20)

As with the PME, appropriate values of � and � (see Section 1) may be substituted into (15)
in order to obtain equations for the mesh potential function �. Again it is necessary to replace
LU by a weak approximation, Q, in this case given by

∫
�(t)
WiQ d�=−

∫
�(t)
Un∇Wi · ∇P d� (21)

where P is the �nite element approximation to p given by
∫
�(t)
WiP d�=−

∫
�(t)

∇Wi · ∇U d� (22)

Figure 1 shows one set of results for this fourth-order equation and compares them with
the exact similarity solution given in References [3, 5] when n=1. The numerical results
suggest an order of accuracy of between 1 and 2 in one dimension and approximately 1 in
two dimensions.
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4. DISCUSSION

We have presented a moving mesh �nite element method based on the use of a scale invariant
conservation principle incorporating an arc length monitor function. Symmetric computational
results have been included, simply to illustrate typical behaviour and performance for this
method, but scale invariance does not depend on symmetry [4] and the technique is far more
generally applicable [3]. There is no reason why it cannot be applied much more widely,
to more complicated geometries with other monitors and other problems exhibiting scale
invariance.
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